

Modelling carbon in waste streams

Rachel Espinosa – Strategic Advisory Lead Ioanna Kyriazi – Consultant

NLWA Waste Prevention Exchange 2022 2nd March 2022

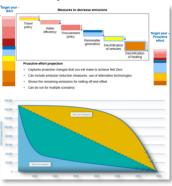
Ricardo's Carbon Management experience

Supporting the UK Government

Calculation of BEIS emission factors

Supporting public bodies

Contribution to The Committee on Climate Change's Net-Zero report



Supporting Local Authorities and cities

Helping the city of Bristol towards carbon neutrality by 2030

Producing emission projections and trajectories

Supporting industry sectors

Developing the recycling & waste sector's net-zero roadmap

Developing the water sector's net-zero roadmap

Developing the Scotch Whisky Assoc's net-zero roadmap

QAS Independent auditor for carbon offsetting services

Carbon footprinting and verifying services

UK Net Zero Agenda

RICARDO

- 2019 Climate Change Act set GHG emission reduction target for the UK of 100% by 2050 (Net Zero target).
- The Committee on Climate Change (CCC) establishes five-year national carbon budgets to achieve this target.
- The Sixth Carbon budget is the first to be announced since the 2019 Amendment to the Climate Change Act.
- PPN 06/21 Suppliers Carbon Reduction Plans:
 - Published on the supplier's website
 - Signed off at an appropriate level within 12 months of the date of the procurement
 - Confirms the supplier's commitment to achieving Net Zero by 2050 (at the latest)
 - Details the supplier's Greenhouse Gas emissions
 - Details the environmental management measures that can be applied in the delivery of the contract.

31st July 2019

Basingstoke and Deane Borough Councillors declare climate crisis

Climate emergency declared by Belfast City Council

(1) 2 October 2019

Suffolk county councillors vote to declare a 'climate emergency'

Surrey declares climate emergency as campaigners stage "die-in"

BY RUTH HAYHURST ON JULY 9, 2019 • (22 COMMENTS)

Warwickshire County Council has declared a climate emergency.

By Oliver Williams

Friday, 26th July 2019, 12:54 pm

'Climate emergency' declared in Leicestershire

The authority aims to become carbon neutral by 2030

Machynlleth declares 'climate emergency'

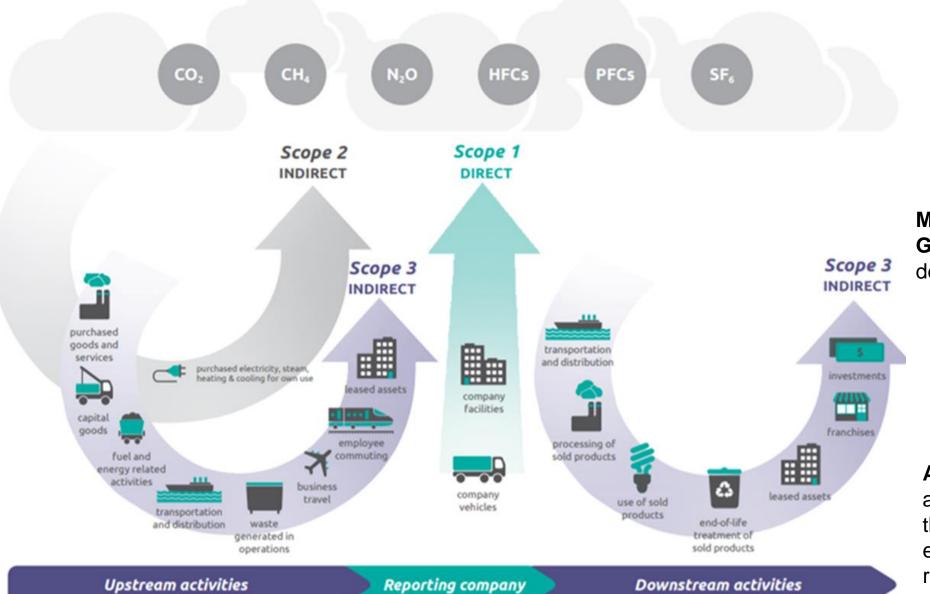
By Steffan Messenger BBC Wales Environment Correspondent

© 24 January 2019

Action on Waste Services

Carbon
Reduction
Target & Net
Zero Pathway

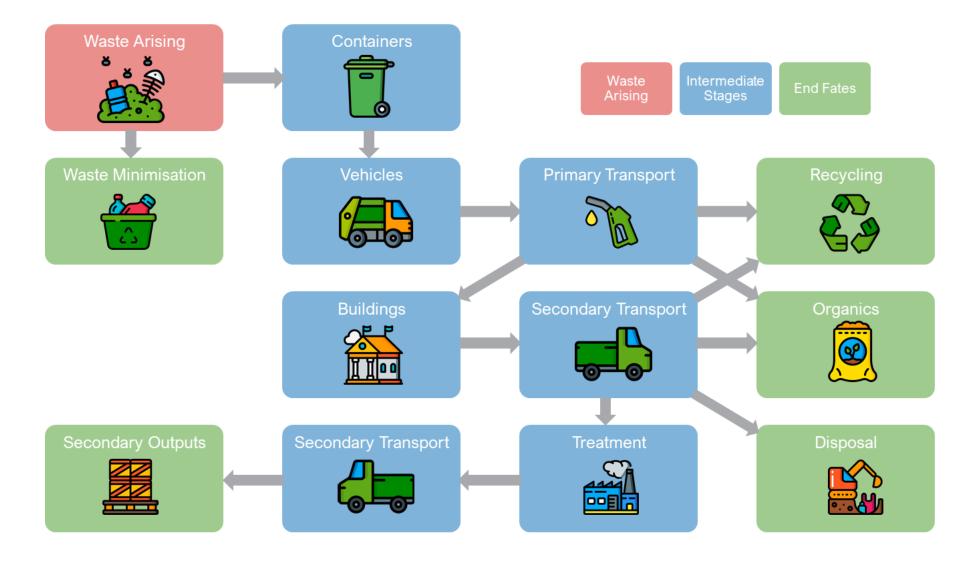
Implementation Policy Options & Action Plan


Feasibility
Studies &
Detailed Design

Carbon Footprint of Current Emissions

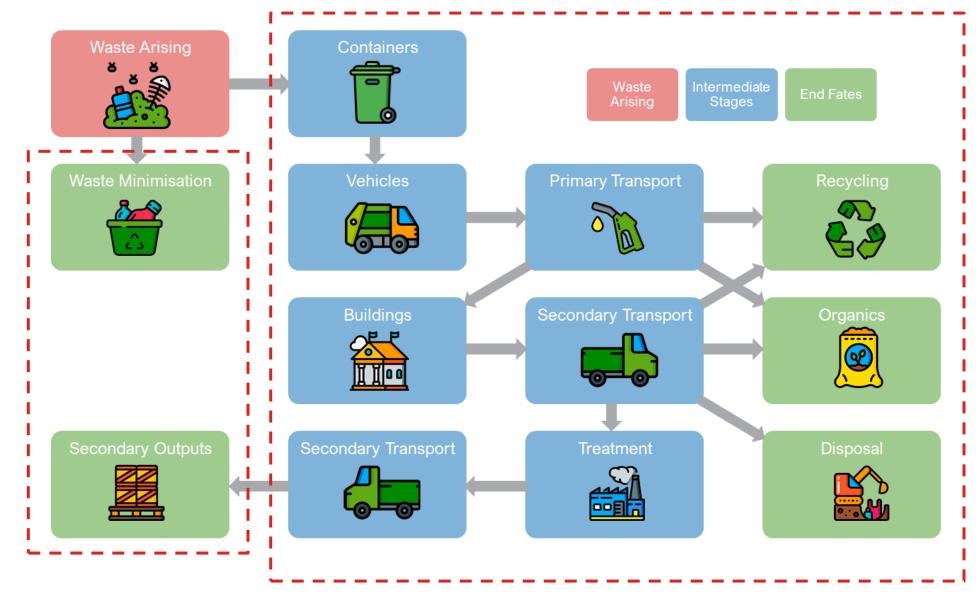
Ricardo key working principals are to 'balance greenhouse gas emissions through mitigation measures and removal from atmosphere, within your local authority boundaries, over time'.

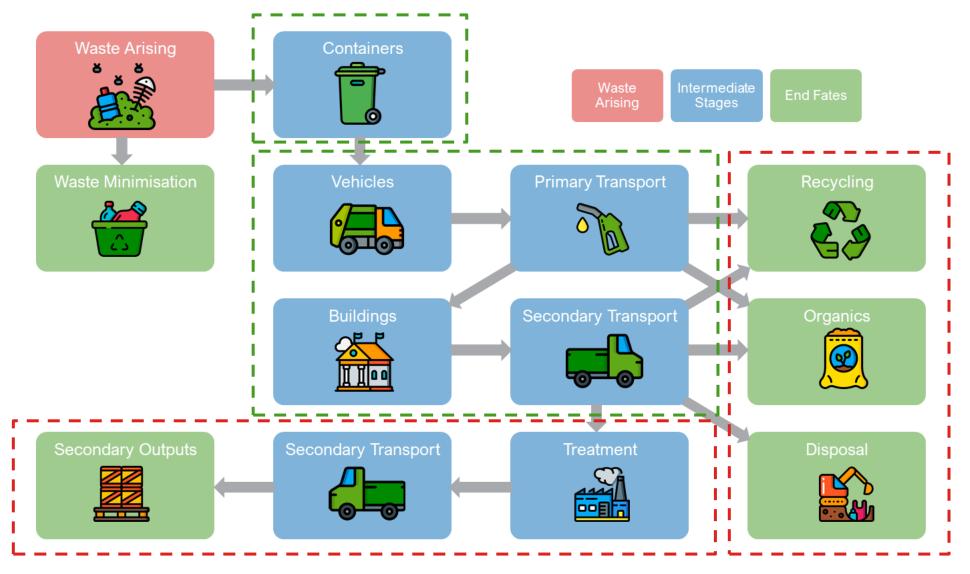
Carbon Footprint of Waste Services



Measuring Scope 3: Other indirect GHG emissions - is optional but demonstrates leadership.

Avoided emissions – when an activity leads to avoiding emissions that would otherwise have occurred elsewhere e.g through reuse or recycling.


Whose carbon is it anyway?


Wholly contracted out service = Scope 3

In-house service

Data and Modelling Carbon Emissions

- Data discrepancies:
 - Different data sources provide different values.
 - Inconsistencies: Different councils and countries use different material categories.
- Destinations: are not always known.
- Emission Factors:
 - No widely accepted metric.
 - Processing factors vary significantly.
 - Published emissions factors for waste management do not allow reporting in Scope 1, 2 & 3.
- Scope: Organisations find it hard to define their boundaries.
- Operational data is often confidential.
- Tools are based on Life Cycle Assessment data that is often old e.g. WRATE, the tool that can provide data for processes and operations, is more than 10 years old.
- Most processes need tailored Life Cycle Assessments for each facility.

GHG modelling tools and metrics

GLA EPS Ready Reckoner

The Scottish Carbon Metric

Carbon Waste and Resources Metric

Entreprises pour l'Environnement (EpE) Tool

EpE Tool

- Created in 1992 by EpE working group: Séché Environnement, Suez and Veolia + others
- Updated regularly
- Transparent data entry and calculations

Ricardo Updates

- Added functionalities to select:
 - between IPCC Assessment Reports AR 4 or 5
 - o a time horizon for GWP − 20, 100 or 500 years
- Emissions factors

Scope	Methodologies				
	BEIS Conversion Factors				
	Ecoinvent				
Direct emissions (Scope 1)	National Atmospheric Emissions Inventory (NAEI)				
	Inter-governmental Panel Climate Change (IPCC)				
	Protocol for quantification of GHG emissions from waste management activities				
	Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEME)				
Indirect emissions (Scope 2)	BEIS Conversion Factors				
Avoided emissions (Scope 3)	Scottish Carbon Metric				

Protocol for the quantification of GHG emissions from waste management activities

EpE Tool Inputs

Waste Management Activities

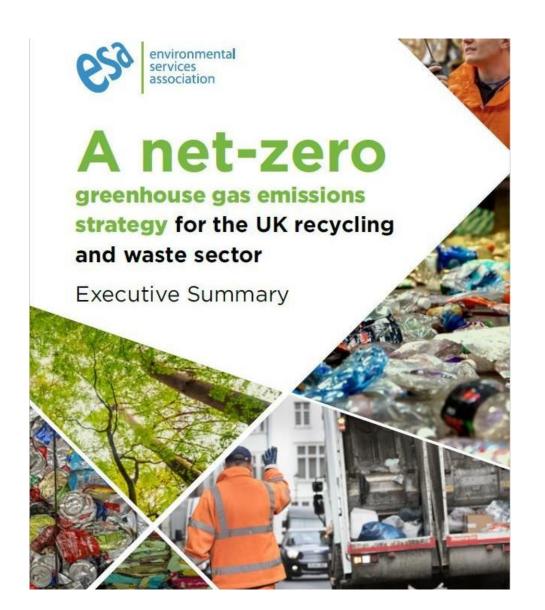
- Transport & collection
- Sorting / transfer / recycling
- Anaerobic digestion
- Composting
- Waste derived fuel
- MBT
- Landfill
- Thermal Treatment

	Used quantities
	kWh
CNG Energy	307,417,261
Diesel (average biofuel blend) Energy	7,414,517,127
Petrol (100% mineral blend) Energy	3,793,699,854
Gas oil Energy	5,445,737,468
Marine gas oil Energy	2,530,238

	Produced and sold
Cold anargy production area	quantity
Sold energy production area	kWh
Electricity Energy	5,071,800,267

Incinerated waste type	Incinerated quantity		
	Tonnes		
Hazardous (EfW) Weight	133,168		
Clinical Waste (EfW) Weight	60,038		
Combustible (EfW) Weight	1,040,051		
WEEE (EfW) Weight	744		
Glass (EfW) Weight	132		
Residual MSW (EfW) Weight	5,861,945		
Residual C&IW (EfW) Weight	2,310,618		
Metals (EfW) Weight	4,409		
Rubble (EfW) Weight	38,075		
Fines (EfW) Weight	12,315		
Paper (EfW) Weight	2,777		
Dense Plastic (EfW) Weight	2,301		
Hazardous (EfW) Weight	51,504		
Soil (EfW) Weight	284		
Textiles (EfW) Weight	217		
Combustible (EfW) Weight	1,888		
Food (EfW) Weight	53,132		
Wood (EfW) Weight	1,650,436		

EpE Tool Data Outputs


ACTIVITIES	DIRECT EMISSIONS in tonnes CO2e (scope 1)		INDIRECT EMISSIONS DUE TO ENERGY in tonnes CO2e (scope 2)		AVOIDED EMISSIONS in tonnes CO2e	
Transport and collection	Fossil fuel consumption	-	Electricity consumption	-		
Sorting – Transfer	Fossil fuel consumption		Electricity consumption	-	Recycling of secundary materials	-
	Emissions from fluorinated gases				Recovery of solid recovered fuels	
	Fossil fuel consumption AD process				Heat recovery from biogas	-
Anaerobic	Direct emissions from biogas		Electricity consumption	_	Electricity recovery from biogas	-
Digestion	combustion	_	,		Agronomic use of compost	_
					Agronomic use of stabilat	
	Fossil fuel consumption	-			Agronomic use of compost	-
Composting	Composting process	-	Electricity consumption	-		
Waste-derived fuel preparation	Fossil fuel consumption	-	Electricity consumption	-	Recovery of solid recovered fuels	-
	Fossil fuel consumption	-			Recovery of solid recovered fuels	
	Biodrying	-		-	Recycling of secundary materials	
	Stabilisation	-			Agronomic use of compost	
MBT	Anaerobic Digestion	-	Electricity consumption		Heat recovery from biogas	•
	Composting	-			Electricity recovery from biogas	
	Refining	-				
	Fossil fuel consumption				Heat recovery from biogas	-
	Methane emissions				Electricity recovery from biogas	
Landfilling	Direct emissions from biogas	-	Electricity consumption	-		
	combustion					
	F 11				El antido a d	
	Fossil fuel consumption				Electricity recovery from waste	
Thermal	Thermal processes		Florida		Heat recovery from waste	
treatment			Electricity consumption		Recycling of secundary materials	-
					Recycling of bottom ash	
					Recycling of slag	
Total		-		-		_

Modelling UK Waste Sector Emissions

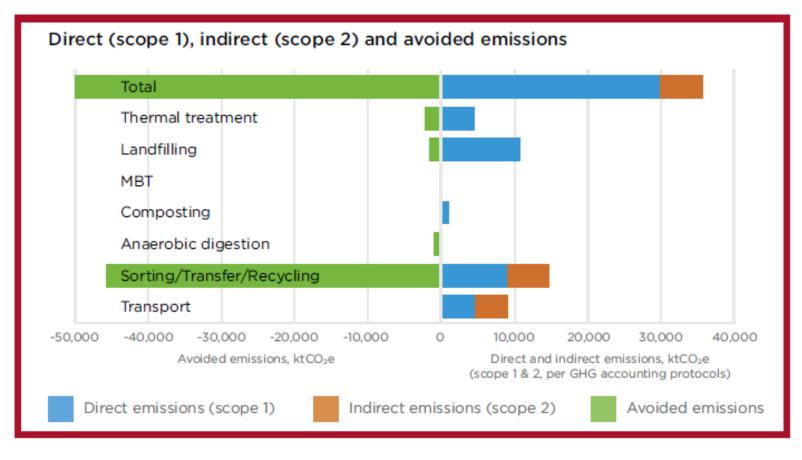
Recycling and Waste Net Zero policy context

In 2020/21 Ricardo calculated the first detailed study to quantify Greenhouse Gas emissions from the UK Recycling and Waste Sector.

This forms the baseline for the Environmental Services Association's Net Zero Strategy.

Target: Net Zero by 2040

UK Waste Sector GHG Emissions (Tonnes CO₂eq)

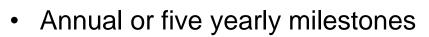


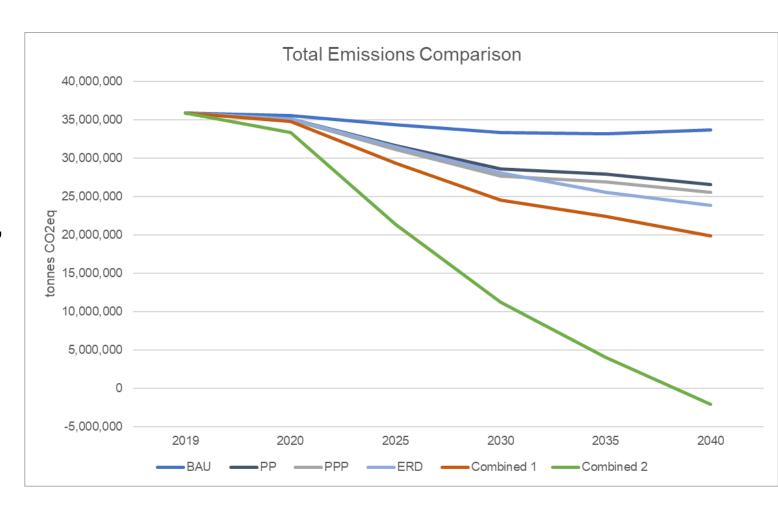
Inclusions

- Municipal Solid Waste
- Commercial & Industrial
- Construction & Demolition
- Hazardous & Clinical

Recycling & waste management activities

- Collection and transportation
- Transfer stations
- Mechanical pre-treatment (dismantling)
- Sorting, recycling and material recovery
- Physicochemical treatment
- Biological treatment (composting, in-vessel composting, anaerobic digestion)
- Landfilling
- Thermal treatment
- Mechanical biological treatment (MBT)


Protocol for the quantification of GHG emissions from waste management activities


Ambi	tious Measures to Reduce Emissions	Tonnes CO₂eq	Reduction 100%
C/1	Landfill methane capture	- 35,814,498	20.9%
*	Waste processing facilities transition from fossil fuels to electricity	- 7,483,172	20.8%
44	CCUS at EfW Plants	- 7,462,804	15.3%
食	Full National Grid decarbonisation by 2040 (beyond current projections)	- 5,486,869	9.4%
₹	Transport & WTS vehicles transition from diesel to zero emissions sources	- 3,361,981	7.9%
<u>~</u>	Efficiency savings at recycling reprocessing plants	- 2,812,844	7.7%
Ĭ	Food waste collections (C&I + HHLD)	- 2,761,013	6.7%
Ō	Divert plastics from EfW plants	- 2,396,789	5.6%
	Waste prevention measures	- 2,021,572	4.8%
	Extended Producer Responsibility	- 1,708,281	0.4%
	Deposit Return Scheme	- 138,004	0.3%
>	Landfill biodegradable ban	- 108,378	0.2%

Ricardo's Net Zero Gap Analysis Tool

- Project emissions under Business as Usual (BAU)
- Test different carbon mitigation scenarios
- Simulate future emissions pathways
- Combine multiple alternative scenarios, resulting in a Net Zero trajectory
- Apply to an organisation's own estate, across a city wide area or defined operation
- Quantify carbon mitigation measures and their impacts

Comparing the carbon impacts of HWRC and Kerbside Collected materials

- Ricardo was commissioned to examine the carbon impacts of collecting various waste streams at HWRCs compared with the impacts of collections via kerbside collections.
- Work included the development of a bespoke tool that allows users to vary inputs such as tonnes
 collected and distances travelled, complete the necessary calculations and summarise the outputs.
- Model includes emissions from drop-off/collection, transfer, processing, treatment and disposal.
- Results report emissions from fuels separately to allow for reporting of scope 1 and 2 emissions and emissions are also reported separately per stream, material, stage and tonne.
- Tool assisted Oxfordshire with planning their approach towards net zero.
- February 2022 phase 2: expand the model to allow a broader scope, greater flexibility and the comparison of various scenarios in time.

Get in touch to find out how we can help you.

Rachel Espinosa

+44 (0) 1235 753 498

rachel.espinosa@ricardo.com

ee.ricardo.com

Ricardo Energy & Environment The Gemini Building Fermi Avenue Harwell, Didcot **OX11 0QR**